000 05284nam a2200289 a 4500
001 29808
005 20230423231329.0
008 130910s2012 us m a001 0 eng d
020 _a9780123814791
049 _bPITLIB
050 4 _aQA76.9.D343
_bH233 2012
100 1 _aHan, Jiawei
_938924
245 1 0 _aData mining :
_bconcepts and techniques /
_cJiawei Han, Micheline Kamber, Jian Pei
_h[book]
250 _a3rd ed.
260 _aBurlington, MA :
_bElsevier,
_cc2012.
_919772
300 _axxxii, 703 p. :
_bill.
449 0 _a•v004– New Arrivals- Sep. 2013
504 _aincludes index
505 0 _aChapter 1. Introduction --
_tIndex.
_t1.2 What Is Data Mining? --
_t1.--
_t3 What Kinds of Data Can Be Mined? --
_t1.4 What Kinds of Patterns Can Be Mined? --
_t1.5 Which Technologies Are Used? --
_t1.6 Which Kinds of Applications Are Targeted? --
_t1.7 Major Issues in Data Mining--
_t1.8 Summary--
_t1.9 Exercises--
_t1.10 Bibliographic Notes--
_tChapter 2. Getting to Know Your Data--
_t2.1 Data Objects and Attribute Types--
_t2.2 Basic Statistical Descriptions of Data--
_t2.--
_t3 Data Visualization--
_t2.4 Measuring Data Similarity and Dissimilarity--
_t2.5 Summary--
_t2.6 Exercises--
_t2.7 Bibliographic Notes--
_tChapter --
_t3. Data Preprocessing--
_t--
_t3.1 Data Preprocessing: An Overview--
_t3.2 Data Cleaning--
_t3.3 Data Integration--
_t3.4 Data Reduction--
_t3.5 Data Transformation and Data iscretization--
_t3.6 Summary--
_t3.7 Exercises--
_t3.8 Bibliographic Notes--
_tChapter --
_t4. Data Warehousing and Online Analytical Processing--
_t4.1 Data Warehouse: Basic Concepts--
_t4.2 Data Warehouse Modeling: Data Cube and OLAP--
_t4. 3 Data Warehouse Design and Usage--
_t4.4 Data Warehouse Implementation--
_t4.5 Data Generalization by Attribute-Oriented Induction--
_t4.6 Summary--
_t4.7 Exercises--
_t4.8 Bibliographic Notes--
_tChapter 5. Data Cube Technology--
_t5.1 Data Cube Computation: Preliminary Concepts--
_t5.2 Data Cube Computation Methods--
_t5. 3 Processing Advanced Kinds of Queries by Exploring Cube Technology--
_t5.4 Multidimensional Data Analysis in Cube Space--
_t5.5 Summary--
_t5.6 Exercises--
_t5.7 Bibliographic Notes--
_tChapter 6. Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and Methods--
_t6.1 Basic Concepts--
_t6.2 Frequent Itemset Mining Methods--
_t6. 3 Which Patterns Are Interesting?--Pattern Evaluation Methods--
_t6.4 Summary--
_t6.5 Exercises--
_t6.6 Bibliographic Notes--
_tChapter t 7. Advanced Pattern Mining--
_t7.1 Pattern Mining: A Road Map--
_t7.2 Pattern Mining in Multilevel, Multidimensional Space--
_t7. 3 Constraint-Based Frequent Pattern Mining--
_t7.4 Mining High-Dimensional Data and Colossal Patterns--
_t7.5 Mining Compressed or Approximate Patterns--
_t7.6 Pattern Exploration and Application--
_t7.7 Summary--
_t7.8 Exercises--
_t7.9 Bibliographic Notes--
_tChapter 8. Classification: Basic Concepts--
_t8.1 Basic Concepts--
_t8.2 Decision Tree Induction--
_t8.3 Bayes Classification Methods--
_t8.4 Rule-Based Classification--
_t8.5 Model Evaluation and Selection--
_t8.6 Techniques to Improve Classification Accuracy--
_t8.7 Summary--
_t8.8 Exercises--
_t8.9 Bibliographic Notes--
_tChapter 9. Classification: Advanced Methods--
_t9.1 Bayesian Belief Networks--
_t9.2 Classification by Backpropagation--
_t9.3 Support Vector Machines--
_t9.4 Classification Using Frequent Patterns--
_t9.5 Lazy Learners (or Learning from Your Neighbors) --
_t9.6 Other Classification Methods--
_t9.7 Additional Topics Regarding Classification--
_t9.8 Summary--
_t9.9 Exercises--
_t9.10 Bibliographic Notes--
_tChapter 10. Cluster Analysis: Basic Concepts and Methods--
_t10.1 Cluster Analysis--
_t10.2 Partitioning Methods--
_t10.t3 Hierarchical Methods--
_t10.4 Density-Based Methods--
_t10.5 Grid-Based Methods--
_t10.6 Evaluation of Clustering--
_t10.7 Summary--
_t10.8 Exercises--
_t10.9 Bibliographic Notes--
_tChapter 11. Advanced Cluster Analysis--
_t11.1 Probabilistic Model-Based Clustering--
_t11.2 Clustering High-Dimensional Data--
_t11.--
_t3 Clustering Graph and Network Data--
_t11.4 Clustering with Constraints--
_t11.5 Summary--
_t11.6 Exercises--
_t11.7 Bibliographic Notes--
_tChapter 12. Outlier Detection--
_t12.1 Outliers and Outlier Analysis--
_t12.2 Outlier Detection Methods--
_t12. 3 Statistical Approaches--
_t12.4 Proximity-Based Approaches--
_t12.5 Clustering-Based Approaches--
_t12.6 Classification-Based Approaches--
_t12.7 Mining Contextual and Collective Outliers--
_t12.8 Outlier Detection in High-Dimensional Data--
_t12.9 Summary--
_t12.10 Exercises12.11 Bibliographic Notes--
_tChapter 13. Data Mining Trends and Research Frontiers--
_t13.1 Mining Complex Data Types--
_t13.2 Other Methodologies of Data Mining--
_t1--
_t3.3 Data Mining Applications--
_t13.4 Data Mining and Society--
_t13.5 Data Mining Trends--
_t13.6 Summary--
_t13.7 Exercises--
_t13.8 Bibliographic Notes--
_tBibliography--
_tIndex.
650 0 _aData mining
_917634
690 0 _a0023 วิศวกรรมศาสตรบัณฑิต สาขาวิศวกรรมคอมพิวเตอร์ CPE (ป.ตรี)
_965
690 0 _a0021 วิทยาศาสตร์บัณฑิต สาขาเทคโนโลยีสารสนเทศ IT (ป.ตรี)
_964
700 1 _aKamber, Micheline
_938925
942 _cBK
988 _c29808
999 _c29808
_d29808