ภาพปกจากเว็บไซต์ Amazon
รูปภาพจากเว็บไซต์ Amazon.com

Data mining : concepts and techniques / Jiawei Han, Micheline Kamber, Jian Pei [book]

By: Contributor(s): Publication details: Burlington, MA : Elsevier, c2012. Edition: 3rd edDescription: xxxii, 703 p. : illISBN:
  • 9780123814791
Subject(s): LOC classification:
  • QA76.9.D343 H233 2012
รายการแท็กจากห้องสมุดนี้: ไม่มีรายการแท็กสำหรับชื่อเรื่องนี้จากห้องสมุดนี้ ล็อกอินเข้าสู่ระบบเพื่อเพิ่มรายการแท็ก
การให้คะแนนความนิยม
    คะแนนเฉลี่ย: 0.0 (0 คะแนนเสียง)
รายการที่มีในห้องสมุด
ประเภททรัพยากร ห้องสมุดที่อยู่ปัจจุบัน หมวดหมู่ ตำแหน่งจัดวาง เลขเรียกหนังสือ หมายเลขฉบับ สถานะ วันกำหนดส่ง บาร์โค้ด จำนวนรายการจอง
หนังสือ หนังสือ PIM Creative Learning Space หนังสือภาษาอังกฤษ English Book Shelves QA76.9.D343 H233 2012 (เรียกดูชั้นหนังสือ(เปิดด้านล่าง)) พร้อมให้บริการ 32550000225626
หนังสือ หนังสือ PIM Creative Learning Space หนังสือภาษาอังกฤษ English Book Shelves QA76.9.D343 H233 2012 (เรียกดูชั้นหนังสือ(เปิดด้านล่าง)) c. 2 พร้อมให้บริการ 32550000229641
หนังสือ หนังสือ PIM Creative Learning Space หนังสือภาษาอังกฤษ English Book Shelves QA76.9.D343 H233 2012 (เรียกดูชั้นหนังสือ(เปิดด้านล่าง)) c. 3 พร้อมให้บริการ 32550000229642
รายการจองทั้งหมด: 0

includes index

Chapter 1. Introduction -- Index. 1.2 What Is Data Mining? -- 1.-- 3 What Kinds of Data Can Be Mined? -- 1.4 What Kinds of Patterns Can Be Mined? -- 1.5 Which Technologies Are Used? -- 1.6 Which Kinds of Applications Are Targeted? -- 1.7 Major Issues in Data Mining-- 1.8 Summary-- 1.9 Exercises-- 1.10 Bibliographic Notes-- Chapter 2. Getting to Know Your Data-- 2.1 Data Objects and Attribute Types-- 2.2 Basic Statistical Descriptions of Data-- 2.-- 3 Data Visualization-- 2.4 Measuring Data Similarity and Dissimilarity-- 2.5 Summary-- 2.6 Exercises-- 2.7 Bibliographic Notes-- Chapter -- 3. Data Preprocessing-- -- 3.1 Data Preprocessing: An Overview-- 3.2 Data Cleaning-- 3.3 Data Integration-- 3.4 Data Reduction-- 3.5 Data Transformation and Data iscretization-- 3.6 Summary-- 3.7 Exercises-- 3.8 Bibliographic Notes-- Chapter -- 4. Data Warehousing and Online Analytical Processing-- 4.1 Data Warehouse: Basic Concepts-- 4.2 Data Warehouse Modeling: Data Cube and OLAP-- 4. 3 Data Warehouse Design and Usage-- 4.4 Data Warehouse Implementation-- 4.5 Data Generalization by Attribute-Oriented Induction-- 4.6 Summary-- 4.7 Exercises-- 4.8 Bibliographic Notes-- Chapter 5. Data Cube Technology-- 5.1 Data Cube Computation: Preliminary Concepts-- 5.2 Data Cube Computation Methods-- 5. 3 Processing Advanced Kinds of Queries by Exploring Cube Technology-- 5.4 Multidimensional Data Analysis in Cube Space-- 5.5 Summary-- 5.6 Exercises-- 5.7 Bibliographic Notes-- Chapter 6. Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and Methods-- 6.1 Basic Concepts-- 6.2 Frequent Itemset Mining Methods-- 6. 3 Which Patterns Are Interesting?--Pattern Evaluation Methods-- 6.4 Summary-- 6.5 Exercises-- 6.6 Bibliographic Notes-- Chapter t 7. Advanced Pattern Mining-- 7.1 Pattern Mining: A Road Map-- 7.2 Pattern Mining in Multilevel, Multidimensional Space-- 7. 3 Constraint-Based Frequent Pattern Mining-- 7.4 Mining High-Dimensional Data and Colossal Patterns-- 7.5 Mining Compressed or Approximate Patterns-- 7.6 Pattern Exploration and Application-- 7.7 Summary-- 7.8 Exercises-- 7.9 Bibliographic Notes-- Chapter 8. Classification: Basic Concepts-- 8.1 Basic Concepts-- 8.2 Decision Tree Induction-- 8.3 Bayes Classification Methods-- 8.4 Rule-Based Classification-- 8.5 Model Evaluation and Selection-- 8.6 Techniques to Improve Classification Accuracy-- 8.7 Summary-- 8.8 Exercises-- 8.9 Bibliographic Notes-- Chapter 9. Classification: Advanced Methods-- 9.1 Bayesian Belief Networks-- 9.2 Classification by Backpropagation-- 9.3 Support Vector Machines-- 9.4 Classification Using Frequent Patterns-- 9.5 Lazy Learners (or Learning from Your Neighbors) -- 9.6 Other Classification Methods-- 9.7 Additional Topics Regarding Classification-- 9.8 Summary-- 9.9 Exercises-- 9.10 Bibliographic Notes-- Chapter 10. Cluster Analysis: Basic Concepts and Methods-- 10.1 Cluster Analysis-- 10.2 Partitioning Methods-- 10.t3 Hierarchical Methods-- 10.4 Density-Based Methods-- 10.5 Grid-Based Methods-- 10.6 Evaluation of Clustering-- 10.7 Summary-- 10.8 Exercises-- 10.9 Bibliographic Notes-- Chapter 11. Advanced Cluster Analysis-- 11.1 Probabilistic Model-Based Clustering-- 11.2 Clustering High-Dimensional Data-- 11.-- 3 Clustering Graph and Network Data-- 11.4 Clustering with Constraints-- 11.5 Summary-- 11.6 Exercises-- 11.7 Bibliographic Notes-- Chapter 12. Outlier Detection-- 12.1 Outliers and Outlier Analysis-- 12.2 Outlier Detection Methods-- 12. 3 Statistical Approaches-- 12.4 Proximity-Based Approaches-- 12.5 Clustering-Based Approaches-- 12.6 Classification-Based Approaches-- 12.7 Mining Contextual and Collective Outliers-- 12.8 Outlier Detection in High-Dimensional Data-- 12.9 Summary-- 12.10 Exercises12.11 Bibliographic Notes-- Chapter 13. Data Mining Trends and Research Frontiers-- 13.1 Mining Complex Data Types-- 13.2 Other Methodologies of Data Mining-- 1-- 3.3 Data Mining Applications-- 13.4 Data Mining and Society-- 13.5 Data Mining Trends-- 13.6 Summary-- 13.7 Exercises-- 13.8 Bibliographic Notes-- Bibliography-- Index.

ไม่มีความคิดเห็นใด ๆ ต่อชื่อเรื่องนี้

เพื่อโพสต์ความคิดเห็น